Philosophy 211 Definitions and Terms used

A note to the reader: There are many different ways of defining some of these terms which in the end turn out equivalent. In all cases the definition I give agrees with the book's definition if it has one. But in reading elsewhere you may come across different definitions for some of these terms.

Throughout, Γ refers to an arbitrary set of sentences such as $\{P, Q, R\} = \Gamma$ or $\{\forall x Px, \forall x Qx, \exists x \forall y Rxy\} = \Gamma$

 φ and ψ refer to arbitrary sentences such as when P \vdash Q might be represented as $\varphi \vdash \psi$ or the conjunction $\varphi \& \psi$ might represent any of P&Q, $\forall x Px \& \forall x Qx$, or $\exists x Px \& (Pa \lor Qb)$

=def means that what follows is the definition of what came before (is equal by definition to...) Example: The definition of a tautology is a sentence which is true in every truth value assignment. It is true that all tautologies are theorems, but it is not true *by definition* that all tautologies are theorems. All tautologies are theorems because of the Completeness Theorem.

Proof terms:

 $\Gamma \models \varphi$ =def there is a proof of φ (φ is the last line) where all of the premises are members of Γ (there might be more members of Γ than are used in the proof).

Example: $\{P \rightarrow Q, P\} \vdash Q$

 Γ is proof-inconsistent =def $\Gamma \models \phi$ and $\Gamma \models \neg \phi$ for some ϕ .

 Γ is proof-consistent =def Γ is not proof-inconsistent.

Examples: $\{P\&Q,Q\rightarrow R\}$ is proof-consistent. $\{P,Q,\sim Pv\sim Q\}$ is proof-inconsistent.

 ϕ is a theorem =def $\displayline \phi$ (that is, $\Gamma \displayline \phi$ when Γ =the empty set which has no members – so ϕ is provable from no premises at all.)

Example: -Pv~P

 φ is stronger than $\psi = \text{def } \varphi \vdash \psi$ and it is false that $\psi \vdash \varphi$.

 ϕ is weaker than ψ =def ψ is stronger than $\phi.$

 ϕ is proof-equivalent to ψ =def ϕ |-\psi and ψ |-\phi

Examples: P is stronger than PvQ

Q is weaker than R&Q ~(PvQ) is proof-equivalent to ~P&~Q

Semantic terms:

 $\Gamma \models \phi$ means that ϕ is a consequence of Γ . It also means that Γ entails ϕ .

 $\Gamma \models \varphi$ =def every interpretation (TVA in SL) that makes every sentence in Γ true also makes φ true. This is equivalent to saying that there is no interpretation (TVA in SL) that makes all the members of Γ true and also makes φ false.

Example:
$$\{\forall x P x, \forall x (P x \rightarrow Q x)\} \models \forall x Q x$$

 Γ is consistent =def there is an interpretation in which all of the members of Γ are true. Γ is inconsistent =def Γ is not consistent.

An interpretation which makes all of the members of Γ true is called a Model of Γ .

Examples: $\{\exists x Px, \exists x \sim Px\}$ is consistent. $\{\forall x Px, \forall x \sim Px\}$ is inconsistent. $I = U: \{a\}$ is a model of $\{\exists x \ x = x\}$

 ϕ is a tautology (SL term) =def ϕ is true in every truth-value assignment

 φ is valid (PL term) =def φ is true in every interpretation.

 φ is a contradiction =def there is no interpretation in which φ is true.

 ϕ is contingent =def ϕ is neither valid nor a contradiction. (This is equivalent to saying that there is an interpretation in which ϕ is true and at least one in which ϕ is false.)

Examples: $Pv \sim P$ is a tautology $\exists x (Px \ v \sim Px)$ is valid $\exists x Px$ is contingent $\exists x (Px \ \& \sim Px)$ is a contradiction

 φ and ψ are independent =def all four of $\{\varphi, \psi\}$, $\{\varphi, \sim\psi\}$, $\{\sim\varphi, \psi\}$, $\{\sim\varphi, \sim\psi\}$ are consistent.

 ϕ is independent of Γ =def $\Gamma \cup \phi$ (Γ added together with ϕ) and $\Gamma \cup \sim \phi$ are both consistent.

 Γ is independent =def there is no $\Gamma_1 \subset \Gamma$ (no subset of Γ) such that $\Gamma_1 \models \varphi$ for some φ in Γ and φ not in Γ_1 . In other words, if you take away some sentence φ from Γ then the rest of the sentences don't entail φ .

```
Examples: \exists x Px \text{ and } \exists x Qx \text{ are independent.}

\exists x Px \text{ is independent of } \{ \forall x (Px \rightarrow Qx), \forall x (Qx \rightarrow Rx) \}

\{ \forall x Rxx, \forall x \forall y (Rxy \rightarrow Ryx), \forall x \forall y \forall z ((Rxy \& Ryz) \rightarrow Rxz) \} \text{ is independent.}
```

Metatheorems that relate proofs and semantics:

The Soundness Theorem says that for any Γ and for any φ , if $\Gamma \vdash \varphi$ then $\Gamma \models \varphi$. This is equivalent to: if $\Gamma \cup \sim \varphi$ is proof-inconsistent then $\Gamma \cup \sim \varphi$ is inconsistent. This is equivalent (by contraposition) to if $\Gamma \cup \sim \varphi$ is consistent then $\Gamma \cup \sim \varphi$ is proof-consistent. Since these are arbitrary this is equivalent to: for any Γ , if Γ is consistent then Γ is proof-consistent.

The Completeness Theorem is the converse of the Soundness Theorem. It says that for any Γ and any φ , if $\Gamma \models \varphi$ then $\Gamma \models \varphi$.

Other major theorems of PL:

Compactness Theorem: Γ is consistent if and only if every finite subset of Γ is consistent.

Church's Theorem: First order logic is undecidable (as long as the language contains at least one two-place predicate). This means that there is no algorithm for correctly answering yes or no to the following question: is $\Gamma \models \varphi$ true or false? (this algorithm would have to work for any Γ , φ) Equivalently, there is no algorithm for answering: is Γ consistent? Is φ a theorem?, etc.